Natural selection for energy-dependent codon optimality
PKR activation and eIF2α phosphorylation mediate human globin mRNA splicing at spliceosome assembly
Short elements in mammalian mRNA can control gene expression by activating the RNA-dependent protein kinase PKR that attenuates translation by phosphorylating cytoplasmic eukaryotic initiation factor 2α (eIF2α). We demonstrate a novel, positive role for PKR activation and eIF2α phosphorylation in human globin mRNA splicing. PKR localizes in splicing complexes and associates with splicing factor SC35. Splicing and early-stage spliceosome assembly on β-globin pre-mRNA depend strictly on activation of PKR by a codon-containing RNA fragment within exon 1 and on phosphorylation of nuclear eIF2α on Serine 51. Nonphosphorylatable mutant eIF2αS51A blocked β-globin mRNA splicing in cells and nuclear extract. Mutations of the β-globin RNA activator abrogated PKR activation and profoundly affected mRNA splicing efficiency. PKR depletion abrogated splicing and spliceosome assembly; recombinant PKR effectively restored splicing. Excision of the first intron of β-globin induces strand displacement within the RNA activator of PKR by a sequence from exon 2, a structural rearrangement that silences the ability of spliced β-globin mRNA to activate PKR. Thus, the ability to activate PKR is transient, serving solely to enable splicing. α-Globin pre-mRNA splicing is controlled likewise but positions of PKR activator and silencer are reversed, demonstrating evolutionary flexibility in how PKR activation regulates globin mRNA splicing through eIF2α phosphorylation.
Reported as: How stress controls hemoglobin levels in blood
…for each of the adult and fetal globin genes, the splicing of its RNA is strictly controlled by an intracellular stress signal.
The signal, which has been known for a long time, involves an enzyme present in every cell of the body, called PKR, which remains silent unless it is activated by a specific RNA structure thought to occur only in RNA made by viruses.
The nutrient energy-dependent pheromone controlled physiology of reproduction prevents stress-induced changes that link virus-driven energy theft from the degradation of messenger RNA to mutations and to all pathology. The findings reported today link more than ~1200 human hemoglobin variants to cell type differentiation and to all morphological and behavioral phenotypes in all human populations.